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1 Introduction

The goal of these lectures is to explain the rough scheme of the proof of the celebrated decom-
position theorem due to Beauville and Bogomolov, about compact Kähler manifolds with zero
first Chern class. Then, I will explain the following result which is a key ingredient to prove
the generalization of the decomposition theorem for projective klt varieties with zero first Chern
class.

Theorem 1.1 (GGK). Let X be a projective variety with klt singularities and KX ≡ 0. Then, there exists a
finite, quasi-étale map f : X′ → X, an abelian variety A, a projective variety Z with canonical singularities
and KZ ∼ 0 such that X′ ' A× Z and such that the tangent sheaf of Z decomposes as

TZ '
⊕
i∈I

Ei

where Ei are foliations of rank at least two, with trivial determinant and such that Sym[k]Ei is strongly
stable for any integer k > 1.

2 Ricci curvature, holonomy and stability

2.1 Yau’s Theorem

Let X be a complex manifold of dimension n.

Definition 2.1. A Kähler metric ω is a smooth, real (1, 1)-form such that ω is closed and positive.
In local coordinates, the positivity condition means that if one writes

(2.1) ω = ∑
α,β

ωαβ̄ idzα ∧ dz̄β

then the n× n complex matrix (ωαβ̄) is hermitian definite positive.

Definition 2.2. Let ω be a Kähler metric that we write locally as in (2.1). Then, the locally defined
(1, 1)-form −i∂∂̄ log det(ωαβ̄) is a globally well-defined closed form denoted by Ric(ω). By abuse
of notation, one writes

Ric(ω) = −i∂∂̄ log ωn.

Moreover, its cohomology class [Ric(ω)] ∈ H1,1(X, R) is independent of ω and is equal to−c1(KX).

Theorem 2.3 (Yau ’78). Let X be a compact Kähler manifold and let α ∈ H1,1(X, R) be a Kähler class.
Assume that c1(KX) = 0 ∈ H1,1(X, R).
Then, there exists a unique Kähler metric ω ∈ α such that Ric(ω) = 0.
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2.2 Holonomy

Definition 2.4. Let (X, ω) be a connected Kähler manifold and let x ∈ X. Let D be the Chern
connection associated to ω. It can be seen as an operator

D : C∞(X, TX)→ C∞(X, End(TX))

u 7→ (v 7→ Duv)

Given a loop γ : [0, 1] → X based at x and given a tangent vector v ∈ TX,x, there exists a unique
smooth section v(t) of γ∗TX such that {

v(0) = v
D ·

γ(t)
v(t) = 0

The vector τγ(v) := v(1) is called the parallel transport of v along γ. This defines an isometry τγ

of (TX,x , ωx) that one sees as an element of U(n) (we implicitly use the Kähler condition).

Definition 2.5. The holonomy group (resp. restricted holonomy group) of (X, ω) at x is defined
by

Hol(X, ω) = {τγ, γ loop at x} ⊂ U(n)
Hol◦(X, ω) = {τγ, γ loop at x homotopic to zero} ⊂ U(n)

It is easy to see that they are indeed groups. In the following, one sets G := Hol(X, ω) and
G◦ := Hol◦(X, ω). With these notations, G◦ is the connected component of the identity of G, and
there exists a tautological surjection

π1(X)� G/G◦.

Definition 2.6. With the notations above, the group G acts on TX,x ' Cn linearly by isometries
and induces a semi-simple complex n-dimensional representation of G called the holonomy rep-
resentation.

Proposition 2.7 (Holonomy principle). Let (X, ω, x) and G as above. The evaluation map evx induces
a 1 : 1 correspondence

{σ ∈ C∞(X, TX) ; Dσ = 0} −→ {σx ∈ TG
X,x}

{F ⊂ TX complex subbundle ; D(F) ⊂ F} −→ {V ⊂ TX,x complex subspace stable under G}

The condition Dσ = 0 means that for any u ∈ C∞(X, TX), one has Duσ = 0. Similarly, D(F) ⊂ F
means that for every u ∈ C∞(X, TX) and v ∈ C∞(X, F), one has Duv ∈ C∞(X, F).

Remark 2.8. The same principle holds for tensor bundles E = T⊗p
X ⊗ (T∗X)

⊗q by considering the
induced connection D on E and the induced tensor representation of G on Ex.

Definition 2.9. Let (X, ω) as above and let E := T⊗p
X ⊗ (T∗X)

⊗q. Let σ ∈ C∞(X, E) and let F ⊂ E
be a complex subbundle. One says that σ (resp. F) is a parallel tensor (resp. subbundle) if Dσ = 0
(resp. D(F) ⊂ F).

Proposition 2.10. Let (X, ω) as above and let E := T⊗p
X ⊗ (T∗X)

⊗q. Let σ ∈ C∞(X, E) and let F ⊂ E be
a complex subbundle.

1. If σ is parallel, then σ is holomorphic (i.e. Dσ = 0 =⇒ ∂̄σ = 0).

2. If F is parallel, then it is a holomorphic subbundle and the C∞ splitting E = F⊕ F⊥ is holomorphic.
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Theorem 2.11 (Bochner’s principle). Let (X, ω) be a compact Kähler manifold such that Ric(ω) = 0
and let α = [ω] ∈ H1,1(X, R).
Then, any holomorphic tensor σ ∈ H0(X, E) is parallel.

Remark 2.12. From the assumptions, it follows that c1(E) = (q− p)c1(KX) = 0.

Proof. Apply Bochner’s identity
∆ω |σ|2ω = |Dσ|2ω

and integrate against ωn.

As a consequence, one has a 1 : 1-correspondence

{σ ∈ H0(X, E)} ←→ {σx ∈ EG
x }

2.3 Stability

Let X be a Kähler manifold of dimension n, let E be a holomorphic vector bundle on X and let
α ∈ H1,1(X, R) be a Kähler class.

Definition 2.13. One says that E is stable (resp. semistable) with respect to α if for any proper
non-zero subsheaf F ⊂ OX(E), one has

c1(F )· αn−1

rk(F)
<

c1(E)· αn−1

rk(E)
(resp. 6 ).

One says that E is polystable if E is the direct sum of stable subbundles of the same slope as E, or
equivalently if E is semistable and it is the direct sum of stable subbundles.

Theorem 2.14. Let X be a compact Kähler manifold such that c1(KX) = 0, let α = [ω] ∈ H1,1(X, R)
and let ω ∈ α be the Kähler Ricci flat metric.
Then, TX is polystable with respect to α. More precisely, TX admits a direct sum decomposition

TX =
⊥⊕

i∈I
Ei

into stable, parallel subbundles with c1(Ei) = 0.

Idea of proof. The Ricci flat Kähler metric ω induces a hermitian metric h on TX which is Hermite-
Einstein, i.e. iΘ(TX , h) ∧ωn−1 = 0. The induces metric h|F on a subbundle F satisfies

iΘ(F, h|F) ∧ωn−1 = trEnd(β∗ ∧ β) ∧ωn−1

where β ∈ C∞(X, Ω1,0
X ⊗Hom(F⊥, F)) is the second fundamental form of (F, h|F) ⊂ (TX , h). So

the quantity above is non-positive and zero everywhere on X iff the splitting TX = F ⊕ F⊥ is
holomorphic.

Corollary 2.15. With the notation of the Theorem above, let G be the holonomy group of (X, ω).
Then, TX is stable with respect to α if and only if the holonomy representation is irreducible.

Proof.

Remark 2.16. Both results above hold when replacing TX by a tensor bundle E = T⊗p
X ⊗ (T∗X)

⊗q

and considering the tensor representation of G induced on Ex.
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3 The Decomposition Theorem

3.1 Varieties with trivial first Chern class

Let X be a projective manifold. One defines KX := det(ΩX), this is a line bundle. One can
look at manifolds satisfying the increasingly weaker conditions below

1. KX ∼ 0 in Pic(X)
⇐⇒ ∃Ω ∈ H0(X, KX) such that Ω never vanishes. Equivalently, Ω ∧Ω is a volume form.

2. KX is torsion in Pic(X), that is, there exists m ∈N∗ such that K⊗m
X ∼ 0.

⇐⇒ ∃Ω ∈ H0(X, K⊗m
X ) such that Ω never vanishes. Equivalently, (Ω∧Ω)1/m is a volume

form.
3. c1(KX) = 0 in H2(X, R).
⇐⇒ ∃ω Kähler form on X, there exists fω ∈ C∞(X) such that Ric(ω) = i∂∂̄ fω.
⇐⇒ ∀ω Kähler form on X, there exists fω ∈ C∞(X) such that Ric(ω) = i∂∂̄ fω.

Obviously, 1 =⇒ 2 =⇒ 3. Moreover, it is easy to check that 2 is equivalent to asking that there
exists a finite étale morphism f : Y → X such that KY ∼ 0.

Example 3.1. According to the dimension, one has
1. In dimension one, tori/elliptic curves C/Λ where Λ is a lattice.
2. In dimension two, one has tori, K3 surfaces (simply connected surfaces with trivial canon-

ical bundle), Enriques surfaces K3/〈ι〉 where ι is a fixed-point free involution.
3. In higher dimension, tori, products, hypersurfaces Xd ⊂ Pn of degree d = n + 1.

3.2 The Decomposition Theorem

Theorem 3.2 (Beauville-Bogomolov). Let X be a projective manifold (or compact Kähler manifold) such
that c1(KX) = 0. Then, there exists a finite étale cover f : X′ → X such that

X′ ' A×∏
j∈J

Yj ×∏
k∈k

Zk

where A is an abelian variety (or a torus), Yj is a Calabi-Yau manifold and Zk is an irreducible holomorphic
symplectic manifold. Moreover, the decomposition of X′ is unique up to permutation of the factors.

Definition 3.3. Let X be a simply connected projective manifold (or compact Kähler manifold) of
dimension n. One says that

1. X is a Calabi-Yau (CY) manifold if there exists a nowhere vanishing holomorphic n-form
Ω such that one has an algebra isomorphism

n⊕
p=0

H0(X, Ωp
X) = C[Ω].

2. X is an irreducible holomorphic symplectic (IHS) manifold if there exists a nowhere de-
generate holomorphic 2-form σ such that one has an algebra isomorphism

n⊕
p=0

H0(X, Ωp
X) = C[σ].

In particular, n is even and σn/2 is a nowhere vanishing holomorphic n-form.

Remark 3.4. A byproduct of the Decomposition theorem is that c1(KX) = 0 implies that KX is
torsion and that π1(X) is virtually abelian.
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3.3 Main Steps of the Proof

Step 1. [Yau]
Find a Kähler metric ω such that Ric(ω) = 0.

Step 2. [de Rham]
Look at the universal cover X̃ of X and split

(X̃, ω̃) ' (Cr , ωeucl)×∏
i∈I

(Mi , ωi).

Step 3. [Cheeger-Gromoll]
Show that the Mi are compact.

Step 4. [Berger-Simons]
Classify the (Mi , ωi) in terms of their holonomy: it is either SU or Sp.

Step 5. [Bochner]
Translate the holonomy condition into an intrinsic geometric property (existence of holomorphic
differential forms) Mi is either a CY or an IHS. In particular H0(Mi , TMi ) = 0.

Step 6. [Bieberbach]
Find a normal subgroup of finite index G < π1(X) such that

G\X̃ ' Cr/Λ×∏
i∈I

Mi.

4 The singular case

In the following, X will be a projective variety with klt singularities and trivial first Chern class.
Without loss of generality, one can actually assume that X has canonical singularities and trivial
canonical bundle. The starting point is the following theorem

Theorem 4.1 (EGZ). In the context above, let H be an ample Cartier divisor. Then, there exists a unique
closed, positive (1, 1) current ω ∈ c1(H) such that{

ω is a smooth Kähler Ricci flat metric on Xreg.∫
Xreg

ωn = c1(H)n.

However, Step 2 and 3 above fail completely in the singular case by lack of completeness of ω|Xreg .
The foliations provided by the holonomy decomposition of (Xreg, ω|Xreg) may thus not be easily
integrated but they can still be understood at least on an appropriate finite cover. This is the
content of the following

Theorem 4.2 (GGK). Let X be a projective variety with klt singularities and KX ≡ 0. Then, there exists a
finite, quasi-étale map f : X′ → X, an abelian variety A, a projective variety Z with canonical singularities
and KZ ∼ 0 such that X′ ' A× Z and such that the tangent sheaf of Z decomposes as

TZ '
⊕
i∈I

Ei

where the subbundles Ei|Zreg ⊂ TZreg are parallel with respect to any singular Ricci flat metric, and their
holonomy is either SU or Sp.
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Idea of the proof. There are several steps.
• Prove that TX is metrically polystable.
• Use Druel’s result to split off an abelian variety and end up with a variety Z whose tangent

sheaf has no flat summand.
• Pick a singular KE metric ω on Z and look at the holonomy representation Hol(Zreg, ω|Xreg)

on TZ,z. It decomposes into irreducible pieces, yielding a decomposition of TZ into parallel
subbundles but the holonomy of the various factors is not covered by Berger-Simons list.
The issue is that one only knows G◦ (it is a product of irreducible SU or Sp) but G/G◦

might be infinite.
• Prove that G/G◦ is finite, and take the corresponding cover to make the holonomy con-

nected.
Take the example where TX = E1 ⊕⊥ E2 where Hol◦(Xreg, ω) = {IdCn1 } × SU(n2). As E1 is
flat, by Druel’s result, there exists an abelian variety, a klt variety Z and a finite étale cover f :
A× Z → X such that TX/A ' f ∗E2 and f ∗ω = ωA ⊕ωZ. In particular, Hol◦(Zreg, ωZ) = SU(n2).
Then π1(Zreg) � GZ/G◦Z ⊂ U(1). Up to taking a further cover of Z, one can assume that the
representation factors through π1(Z) (GKP), hence through H1(X, Z). As dimC H1(X, Z)⊗C =

2 dimC H0(X, Ω[1]
X ) 6 dim(Cn2)SU(n2) = 0, the image of the representation is finite.

Corollary 4.3 (Bochner principle). Any holomorphic tensor

σ ∈ H0(Xreg, T ⊗p
X ⊗ (T ∗X )⊗q)

is parallel with respect to any singular Ricci-flat metric.

Idea of the proof. A holomorphic tensor generates a trivial saturated subsheaf L of the polystable
sheaf T

⊗p
X ⊗ (T ∗X )⊗q. Hence that line is invariant under the holonomy group. As the holonomy

does not have any non-trivial character, the pointwise action of the holonomy on the line Lx is
trivial.

Corollary 4.4. The sheaves Ei above are strongly stable; i.e. for any g : Z′ → Z quasi-étale and finite and
for any polarization H′ on Z′, the sheaf g[∗]Ei is stable with respect to H′. More generally, the same is true
for any reflexive symmetric power Sym[k]Ei, k > 1.

Proof. We have seen that stability is equivalent to irreducibility of the holonomy representation.
After passing to a quasi-étale, the restricted holonomy does not change. Hence the holonomy
does not change either as it is already connected.

Assuming that X or a cover splits as a product of varieties ∏ Xi where Ei becomes isomorphic
to p∗i TXi , one could classify the factors Xi in terms of their holomorphic forms.

Corollary 4.5. If TX is stable and remains stable after quasi-étale finite covers, then the algebra of reflexive
holomorphic forms on X and any of its covers is either the one of a CY or a IHS.
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