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1 Introduction

The goal of these lectures is to explain the rough scheme of the proof of the celebrated decom-
position theorem due to Beauville and Bogomolov, about compact Kdhler manifolds with zero
first Chern class. Then, I will explain the following result which is a key ingredient to prove
the generalization of the decomposition theorem for projective klt varieties with zero first Chern
class.

Theorem 1.1 (GGK). Let X be a projective variety with kit singularities and Kx = 0. Then, there exists a
finite, quasi-étale map f : X' — X, an abelian variety A, a projective variety Z with canonical singularities
and Kz ~ 0 such that X' ~ A x Z and such that the tangent sheaf of Z decomposes as

Ty ~ @@@l
iel

where &; are foliations of rank at least two, with trivial determinant and such that Sym[k]éai is strongly
stable for any integer k > 1.

2 Ricci curvature, holonomy and stability

21 Yau’s Theorem
Let X be a complex manifold of dimension 7.

Definition 2.1. A K&hler metric w is a smooth, real (1,1)-form such that w is closed and positive.
In local coordinates, the positivity condition means that if one writes

(2.1) w = Zw“/g idzo NdZp
wp

then the n x n complex matrix (w, 5) is hermitian definite positive.

Definition 2.2. Let w be a Kéhler metric that we write locally as in (2.1). Then, the locally defined
(1,1)-form —idd log det(w,z) is a globally well-defined closed form denoted by Ric(w). By abuse
of notation, one writes B

Ric(w) = —iddlog w".
Moreover, its cohomology class [Ric(w)] € H!(X, R) is independent of w and is equal to —c; (Kx).

Theorem 2.3 (Yau '78). Let X be a compact Kihler manifold and let & € H''(X,R) be a Kihler class.
Assume that c1(Kx) = 0 € HY1 (X, R).
Then, there exists a unique Kihler metric w € a such that Ric(w) = 0.



2.2 Holonomy
Definition 2.4. Let (X, w) be a connected Kdhler manifold and let x € X. Let D be the Chern
connection associated to w. It can be seen as an operator
D:C*(X,Tx) = C*(X,End(Tx))
u+— (v Dyo)

Given a loop 7 : [0,1] — X based at x and given a tangent vector v € Ty ,, there exists a unique
smooth section v(t) of 4*Tx such that

v(0)=v

D., o(t)=0

7(H)

The vector T, (v) := v(1) is called the parallel transport of v along . This defines an isometry T,
of (Tx x, wy) that one sees as an element of U(n) (we implicitly use the Kihler condition).

Definition 2.5. The holonomy group (resp. restricted holonomy group) of (X, w) at x is defined
by
Hol(X, w) = {t,, v loop at x} C U(n)
Hol®(X, w) = {t,, v loop at x homotopic to zero} C U(n)
It is easy to see that they are indeed groups. In the following, one sets G := Hol(X,w) and

G° := Hol°(X, w). With these notations, G° is the connected component of the identity of G, and
there exists a tautological surjection

7'[1(X) —» G/GO.

Definition 2.6. With the notations above, the group G acts on Tx ; ~ C" linearly by isometries
and induces a semi-simple complex n-dimensional representation of G called the holonomy rep-
resentation.

Proposition 2.7 (Holonomy principle). Let (X, w, x) and G as above. The evaluation map ev, induces
a1l :1 correspondence
{o€C™(X,Tx); Do =0} — {ox € T}
{F C Tx complex subbundle ; D(F) C F} — {V C Tx,x complex subspace stable under G}

The condition Do = 0 means that for any u € C*(X, Tx), one has D, = 0. Similarly, D(F) C F
means that for every u € C*(X, Tx) and v € C*(X, F), one has D,v € C*(X, F).

Remark 2.8. The same principle holds for tensor bundles E = Tf? P ® (T%)®1 by considering the
induced connection D on E and the induced tensor representation of G on E,.

Definition 2.9. Let (X, w) as above and let E := Tf?p ® (Ty)®1. Leto € C®°(X,E) and let F C E
be a complex subbundle. One says that o (resp. F) is a parallel tensor (resp. subbundle) if Do = 0
(resp. D(F) C F).

Proposition 2.10. Let (X, w) as above and let E := Tf‘?p ® (Tx)®1. Let 0 € C®°(X, E) and let F C E be
a complex subbundle.

1. If o is parallel, then o is holomorphic (i.e. Do =0 = do = 0).

2. If Fis parallel, then it is a holomorphic subbundle and the C* splitting E = F & F* is holomorphic.



Theorem 2.11 (Bochner’s principle). Let (X, w) be a compact Kihler manifold such that Ric(w) = 0
and let & = [w] € HY1(X,R).
Then, any holomorphic tensor o € H°(X, E) is parallel.

Remark 2.12. From the assumptions, it follows that ¢ (E) = (g — p)c1(Kx) = 0.

Proof. Apply Bochner’s identity
Aulofs, = Dol

and integrate against w". O

As a consequence, one has a 1 : 1-correspondence

{o € HY(X,E)} +— {0y € ES}

2.3 Stability

Let X be a Kdhler manifold of dimension 7, let E be a holomorphic vector bundle on X and let
x € H"(X,R) be a Kéhler class.

Definition 2.13. One says that E is stable (resp. semistable) with respect to « if for any proper
non-zero subsheaf 7 C Ox(E), one has

o (F)-a"' ¢ (E)-am?
k(F)  ~ " tk(E)

(resp. < ).

One says that E is polystable if E is the direct sum of stable subbundles of the same slope as E, or
equivalently if E is semistable and it is the direct sum of stable subbundles.

Theorem 2.14. Let X be a compact Kihler manifold such that ¢;(Kx) = 0, let « = [w] € H'1(X,R)
and let w € « be the Kihler Ricci flat metric.
Then, T is polystable with respect to a. More precisely, Tx admits a direct sum decomposition

L
Tx = PE;
i€l
into stable, parallel subbundles with c1(E;) = 0.

Idea of proof. The Ricci flat Kdhler metric w induces a hermitian metric # on Tx which is Hermite-
Einstein, i.e. i®(Tx, h) A w"~! = 0. The induces metric |r on a subbundle F satisfies

iO(F, h|p) A"t = trgng (B AB) A"t

where g € C®(X, Q%(’O ® Hom(F*, F)) is the second fundamental form of (F,h|g) C (Tx,h). So
the quantity above is non-positive and zero everywhere on X iff the splitting Tx = F & F* is
holomorphic. O

Corollary 2.15. With the notation of the Theorem above, let G be the holonomy group of (X, w).
Then, T is stable with respect to a if and only if the holonomy representation is irreducible.

Proof. O

Remark 2.16. Both results above hold when replacing Tx by a tensor bundle E = T;? P& (Ty)®
and considering the tensor representation of G induced on Ey.



3 The Decomposition Theorem

3.1 Varieties with trivial first Chern class
Let X be a projective manifold. One defines Kx := det(Q)x), this is a line bundle. One can
look at manifolds satisfying the increasingly weaker conditions below
1. Kx ~ 0in Pic(X) B
<= 30 € H°(X, Kx) such that Q never vanishes. Equivalently, Q A Q) is a volume form.
2. K is torsion in Pic(X), that is, there exists m € IN* such that K{" ~ 0.

< 3Q € HY(X,KY™) such that Q) never vanishes. Equivalently, (Q A Q)!/™ is a volume
form.

3. ¢1(Kx) = 0in H*(X, R). i
<= Jw Kabhler form on X, there exists f,, € C*(X) such that Ric(w) = iddf,,.
<= V w Kihler form on X, there exists f,, € C*(X) such that Ric(w) = iddf,.

Obviously,1 = 2 == 3. Moreover, it is easy to check that 2 is equivalent to asking that there
exists a finite étale morphism f : Y — X such that Ky ~ 0.
Example 3.1. According to the dimension, one has

1. In dimension one, tori/elliptic curves C/A where A is a lattice.

2. In dimension two, one has tori, K3 surfaces (simply connected surfaces with trivial canon-
ical bundle), Enriques surfaces K3/ (1) where ¢ is a fixed-point free involution.

3. In higher dimension, tori, products, hypersurfaces X; C IP" of degreed = n 4 1.

3.2 The Decomposition Theorem

Theorem 3.2 (Beauville-Bogomolov). Let X be a projective manifold (or compact Kihler manifold) such
that c1(Kx) = 0. Then, there exists a finite étale cover f : X' — X such that

X'~ Ax[]Yix]]Z

j€] kek

where A is an abelian variety (or a torus), Y; is a Calabi-Yau manifold and Zy is an irreducible holomorphic
symplectic manifold. Moreover, the decomposition of X' is unique up to permutation of the factors.

Definition 3.3. Let X be a simply connected projective manifold (or compact Kdhler manifold) of
dimension n. One says that

1. X is a Calabi-Yau (CY) manifold if there exists a nowhere vanishing holomorphic n-form
Q) such that one has an algebra isomorphism

& HO(x,af) = c[a)].
p=0

2. X is an irreducible holomorphic symplectic (IHS) manifold if there exists a nowhere de-
generate holomorphic 2-form ¢ such that one has an algebra isomorphism

B HO(x, ) - Clo].
p=0

n/2

In particular, 7 is even and ¢/ “ is a nowhere vanishing holomorphic n-form.

Remark 3.4. A byproduct of the Decomposition theorem is that ¢1(Kx) = 0 implies that Kx is
torsion and that 771 (X) is virtually abelian.



3.3 Main Steps of the Proof

Step 1. [Yau]
Find a Kédhler metric w such that Ric(w) = 0.

Step 2. [de Rham]
Look at the universal cover X of X and split

(X/J]) = (Cr/ weucl) X H(Mi/ wi)‘
iel

Step 3. [Cheeger-Gromoll]
Show that the M; are compact.

Step 4. [Berger-Simons]
Classify the (M;, w;) in terms of their holonomy: it is either SU or Sp.

Step 5. [Bochner]
Translate the holonomy condition into an intrinsic geometric property (existence of holomorphic
differential forms) ~~ M; is either a CY or an IHS. In particular H(M;, Tn,) = 0.

Step 6. [Bieberbach]
Find a normal subgroup of finite index G < 711 (X) such that

G\X ~C"/Ax ][ M

i€l
4 The singular case

In the following, X will be a projective variety with klt singularities and trivial first Chern class.
Without loss of generality, one can actually assume that X has canonical singularities and trivial
canonical bundle. The starting point is the following theorem

Theorem 4.1 (EGZ). In the context above, let H be an ample Cartier divisor. Then, there exists a unique
closed, positive (1,1) current w € c¢1(H) such that

w is a smooth Kihler Ricci flat metric on Xreg.
ereg w" =1 (H)".

However, Step 2 and 3 above fail completely in the singular case by lack of completeness of w|x,,,-
The foliations provided by the holonomy decomposition of (Xreg, w|x,.,) may thus not be easily
integrated but they can still be understood at least on an appropriate finite cover. This is the
content of the following

Theorem 4.2 (GGK). Let X be a projective variety with kit singularities and Kx = 0. Then, there exists a
finite, quasi-étale map f : X' — X, an abelian variety A, a projective variety Z with canonical singularities
and Kz ~ 0 such that X' ~ A X Z and such that the tangent sheaf of Z decomposes as

Ty ~ @é’l
iel

where the subbundles &;7,., C Iz, are parallel with respect to any singular Ricci flat metric, and their
holonomy is either SU or Sp.



Idea of the proof. There are several steps.

e Prove that Jx is metrically polystable.

e Use Druel’s result to split off an abelian variety and end up with a variety Z whose tangent
sheaf has no flat summand.

e Pickasingular KE metric w on Z and look at the holonomy representation Hol(Zreg, w/x,,, )
on Ty .. It decomposes into irreducible pieces, yielding a decomposition of .77 into parallel
subbundles but the holonomy of the various factors is not covered by Berger-Simons list.
The issue is that one only knows G° (it is a product of irreducible SU or Sp) but G/G°
might be infinite.

e Prove that G/G° is finite, and take the corresponding cover to make the holonomy con-
nected.

Take the example where Jx = & ®1 & where Hol®(Xreg, w) = {Idcm } X SU(n2). As & is
flat, by Druel’s result, there exists an abelian variety, a klt variety Z and a finite étale cover f :
A x Z — Xsuchthat Jx,4 ~ f*& and f*w = w4 © wz. In particular, Hol® (Zreg, wz) = SU(n2).
Then 711(Zreg) — Gz/G5 C U(1). Up to taking a further cover of Z, one can assume that the
representation factors through 711(Z) (GKP), hence through H'(X, Z). As dim¢ H'(X,Z) ® C =

2dime HO(X, Qg]) < dim(C™)8Y("2) = 0, the image of the representation is finite. O

Corollary 4.3 (Bochner principle). Any holomorphic tensor
0 € H'(Xreg, Ty " @ (T%)%9)
is parallel with respect to any singular Ricci-flat metric.

Idea of the proof. A holomorphic tensor generates a trivial saturated subsheaf . of the polystable

sheaf §X®p ® (Zy)®1. Hence that line is invariant under the holonomy group. As the holonomy
does not have any non-trivial character, the pointwise action of the holonomy on the line .%% is
trivial. O

Corollary 4.4. The sheaves &; above are strongly stable; i.e. for any § : Z' — Z quasi-étale and finite and
for any polarization H' on Z', the sheaf g1*| & is stable with respect to H'. More generally, the same is true
for any reflexive symmetric power Sym[k] é, k> 1.

Proof. We have seen that stability is equivalent to irreducibility of the holonomy representation.
After passing to a quasi-étale, the restricted holonomy does not change. Hence the holonomy
does not change either as it is already connected. O

Assuming that X or a cover splits as a product of varieties [ ] X; where &; becomes isomorphic
to p; Ix;, one could classify the factors X; in terms of their holomorphic forms.

Corollary 4.5. If I is stable and remains stable after quasi-étale finite covers, then the algebra of reflexive
holomorphic forms on X and any of its covers is either the one of a CY or a IHS.
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