ERRATUM FOR THE ARTICLE "TORIC PLURISUBHARMONIC FUNCTIONS AND ANALYTIC ADJOINT IDEAL SHEAVES"

by
Henri Guenancia

Abstract

In this erratum, we explain a mistake in [Gue12], pointed out to us by Mario Chan, where it was wrongly claimed that on a complex manifold X, the algebraic and ideal adjoint ideal sheaves associated to an SNC divisor D and a coherent ideal sheaf \mathfrak{a} coincide. Although this is false is general, we show that the result holds if the divisor D is smooth.

The definition stated in [Gue12, Definition 2.1] of the algebraic adjoint ideal attached to an ideal \mathfrak{a} and a reduced divisor D on a complex manifold X is unfortunately incorrect, since the sheaf in that definition may depend on the chosen log resolution of the ideal generated by \mathfrak{a} and $\mathcal{O}_{X}(-D)$. The correct definition, as stated e.g. in [Tak10] or [Eis10] in a higher degree of generality, is as follows

Definition 0.1. - Let $\mathfrak{a} \subset \mathcal{O}_{X}$ be a non-zero coherent ideal sheaf on a smooth complex variety $X, c>0$ a real number, and D a reduced divisor on $\underset{\sim}{X}$ such that \mathfrak{a} is not contained in any ideal $\mathscr{I}_{D_{i}}$ of D_{i} an irreducible component of D. Let $\mu: \widetilde{X} \rightarrow X$ be a \log resolution such that \widetilde{X} is smooth, the strict transform $D^{\prime}=\mu_{*}^{-1} D$ of D is smooth, and $\mu^{-1} \mathfrak{a}=\mathcal{O}_{\widetilde{X}}(-F)$ where F is a divisor on \widetilde{X} such that $F+D^{\prime}+\operatorname{Exc}(\mu)$ has simple normal crossings support. Then, the ideal sheaf

$$
\operatorname{Adj}\left(\mathfrak{a}^{c}, D\right):=\mu_{*} \mathcal{O}_{\widetilde{X}}\left(K_{\widetilde{X} / X}-\lfloor c \cdot F\rfloor-\mu^{*} D+D^{\prime}\right)
$$

is independent of the resolution and called the adjoint ideal sheaf associated ot (\mathfrak{a}, D).
In [Gue12, Definition 2.1], we had not required the condition that D^{\prime} be smooth, in which case the sheaf one obtains depends on the resolution as one sees by taking e.g. $X=\mathbb{C}^{2}, \mathfrak{a}=\mathcal{O}_{X}$ and $D=\left(z_{1} z_{2}=0\right)$. Then $\mu_{1}=\operatorname{Id}_{\mathbb{C}^{2}}$ and $\mu_{2}=\mathrm{Bl}_{0}\left(\mathbb{C}^{2}\right) \rightarrow \mathbb{C}^{2}$ yield two different ideals (respectively \mathcal{O}_{X} and \mathfrak{m}_{0}).

As pointed out by Mario Chan (see [Cha21, Example 6.3.1]), this example shows that the algebraic adjoint ideal associated to (\mathfrak{a}, D) where D is SNC does not coincide with the analytic adjoint ideal defined in [Gue12, Definition 2.10], so that [Gue12, Proposition 2.11] is incorrect. The error lies in the proof of [Gue12, Lemma 2.12] where at the beginning of the proof we assert that $a_{k}>0$ while this is not true in general. However, the equality of the two sheaves holds when D is smooth, as we explain below (see also [Cha21, Theorem 5.2.5] for an alternative approach).

Proposition 0.2. - Let D be a smooth hypersurface on a complex manifold X, \mathfrak{a} a coherent analytic ideal sheaf on X not containing any of the ideals of the components of $D, c>0$ a real number and $\varphi_{c \cdot \mathfrak{a}}$ be a psh function attached to \mathfrak{a}^{c}. Then the following equality of sheaves holds:

$$
\mathcal{A d j}{ }_{D}\left(\varphi_{c \cdot \mathfrak{a}}\right)=\operatorname{Adj}\left(\mathfrak{a}^{c}, D\right) .
$$

Proof. - The argument borrows most of the computations in the proof of [Gue12, Proposition 2.11].

The problem is local, so one can assume that $X \subset \mathbb{C}^{n}$ is an open subset, that D is irreducible given by $f_{D}=0$ for some holomorphic function f_{D} on X. Let $\mu: X^{\prime} \rightarrow X$ be a modification as in Definition 0.1; we can assume that μ is isomorphic outside the support $V(\mathfrak{a}):=\operatorname{Supp}\left(\mathcal{O}_{X} / \mathfrak{a}\right)$. We write

$$
K_{X}^{\prime}+D^{\prime}=\mu^{*}\left(K_{X}+D\right)+\sum_{j \in J} a_{j} E_{j}
$$

where $\left(E_{j}\right)_{j \in J}$ are the exceptional divisors of μ and $a_{j} \in \mathbb{Z}$. Actually, it follows from the smoothness of D that the a_{j} 's satisfy $a_{j} \geqslant 0$ thanks to [Kol97, Lemma 3.11], but we won't be using it.

Write $\mu^{*} \mathfrak{a}=\mathcal{O}_{X^{\prime}}(-F)$ where $F=\sum_{i \in I} c_{i} E_{i}$ where $I \supset J, c_{i} \in \mathbb{N}$ and $D^{\prime}+\sum_{i \in I} E_{i}$ is SNC. The E_{i} 's with $i \in I \backslash J$ correspond to the divisorial components of $V(\mathfrak{a})$. The assumption on \mathfrak{a} imposes that

$$
\begin{equation*}
\forall i \in I, \quad D^{\prime} \neq E_{i} . \tag{1}
\end{equation*}
$$

Moreover, since μ is isomorphic outside $V(\mathfrak{a})$, every function in $\mu^{*} \mathfrak{a}$ vanishes along every exceptional divisor. In other words,

$$
\begin{equation*}
\forall i \in I, \quad c_{i}>0 \tag{2}
\end{equation*}
$$

If f is a germ of holomorphic function defined on a sufficiently small neighborhood U of 0 , we have to compute the following expression:

$$
\begin{equation*}
\int_{U} \frac{|f|^{2} e^{-2(1+\epsilon) \varphi}}{\left|f_{D}\right|^{2} \log ^{2}\left|f_{D}\right|} d V=\int_{\mu^{-1}(U)} \frac{|f \circ \mu|^{2} e^{-2(1+\epsilon) \varphi \circ \mu}}{\left|f_{D} \circ \mu\right|^{2} \log ^{2}\left|f_{D} \circ \mu\right|}\left|J_{\mu}\right|^{2} d V^{\prime} \tag{3}
\end{equation*}
$$

We can cover $\mu^{-1}(U)$ with finitely many coordinate charts $\left(U^{\prime}, z_{1}, \ldots, z_{n}\right)$. The charts that do not intersect D^{\prime} can be treated similarly to the ones intersecting D^{\prime}, so we will focus on the latter case. We can then choose the coordinates such that $D^{\prime} \cap U=\left(z_{1}=0\right)$. Moreover, we can ensure thanks to (1) that there is an injection $\sigma:\{2, \ldots, m\} \rightarrow I$ such that the only components of E intersecting U^{\prime} are the $\left(E_{\sigma(i)}\right)_{2 \leqslant i \leqslant m}$ and that these components are given by $E_{\sigma(i)} \cap U^{\prime}=\left(z_{i}=0\right)$. For convenience, one will identify a_{i} and $a_{\sigma(i)}$, and set

$$
a_{1}:=-1, \quad c_{1}=0
$$

Thanks to Parseval's theorem, if a function f is such that the right hand side of (3) is finite, then all monomials in the Taylor expansion of f satisfy the same property. So there is no loss of generality in supposing that $f \circ \mu=\prod_{i=1}^{n} z_{i}^{d_{i}}$. Thus, up to a non-zero multiplicative constant, (3) can be expressed as a sum of integrals of the form :

$$
\int_{U^{\prime}} \frac{\prod_{i=1}^{m}\left|z_{i}\right|^{2\left(d_{i}-(1+\epsilon) c c_{i}+a_{i}\right)}}{\log ^{2}\left(\left|z_{1}\right| \prod_{i=2}^{m}\left|z_{i}\right|^{b_{i}}\right)} d V^{\prime}
$$

where U^{\prime} is contained in a small polydisk in \mathbb{C}^{n} and the integers $b_{i} \geqslant 0$ are defined by the identity $\mu^{*} D=D^{\prime}+\sum_{i=2}^{m} b_{i} E_{\sigma(i)}$ holding on U^{\prime}.

Set $\lambda_{i}(\epsilon)=2\left(d_{i}-(1+\epsilon) c c_{i}+a_{i}\right)+1$ for all $1 \leqslant i \leqslant m$, and changing to polar coordinates leads us to estimating the following integral, on a neighborhood V of 0 in \mathbb{R}_{+}^{m} :

$$
I(\epsilon)=\int_{V} \frac{\prod_{i=1}^{m} x_{i}^{\lambda_{i}(\epsilon)}}{\log ^{2}\left(x_{1} \prod_{b_{i}>0} x_{i}\right)} d x_{1} \cdots d x_{m}
$$

and V some small neighborhood of 0 in \mathbb{R}_{+}^{m}.

Now, $f \in H^{0}\left(X, \mu_{*} \mathcal{O}_{X^{\prime}}\left(K_{X^{\prime} / X}-[c \cdot F]-\mu^{*} D+D^{\prime}\right)\right)$ if and only if for all U^{\prime} as above, we have $d_{i}+a_{i}-\left\lfloor c c_{i}\right\rfloor \geqslant 0$. But for any real number $x \geqslant 0$, we have $\lfloor(1+\epsilon) x\rfloor=\lfloor x\rfloor$ for $\epsilon>0$ small enough (any $\epsilon<(\lfloor x\rfloor+1) / x-1$ does the job). Therefore,

$$
\begin{equation*}
f \in H^{0}\left(X, \operatorname{Adj}\left(\mathfrak{a}^{c}, D\right)\right) \Longleftrightarrow \exists \epsilon>0, \forall i \in\{1, \ldots, m\}, \lambda_{i}(\epsilon) \geqslant-1 . \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lambda_{1}(\epsilon)=2 d_{1}-1 \geqslant-1 \tag{5}
\end{equation*}
$$

so that we only have to consider indices i satisfying $i \geqslant 2$. The conclusion now follows from the lemma below, give or take the fact that we have only worked on charts U^{\prime} such that $D^{\prime} \cap U^{\prime} \neq \emptyset$. The argument to deal with the other charts is entirely similar, yet a bit easier so we don't reproduce it here.

Lemma 0.3. - Fix $\epsilon>0$. Then the integral $I\left(\epsilon^{\prime}\right)$ converges for all $0<\epsilon^{\prime}<\epsilon$ if and only if for any $i \in\{2, \ldots, m\}$, we have $\lambda_{i}(\epsilon) \geqslant-1$.

Proof. - If $I\left(\epsilon^{\prime}\right)$ converges, then the usual criterion which determines the integrability near 0 of $x^{\alpha} \log ^{\beta} x$ shows that $\lambda\left(\epsilon^{\prime}\right) \geqslant-1$. We can then let ϵ^{\prime} go to ϵ to obtain one assertion in the claim. Conversely, we suppose that for all $i \geqslant 2$, we have $\lambda_{i}(\epsilon) \geqslant-1$. Thanks to (5) and the following identity holding for any $x>0$

$$
\int_{[0, \delta]} \frac{y^{-1}}{\log ^{2}(x y)} d y=\frac{1}{-\log (\delta x)}
$$

we get that up to a multiplicative constant,

$$
I(\epsilon) \leqslant \int_{W} \frac{\prod_{i=2}^{m} x_{i}^{\lambda_{i}(\epsilon)}}{-\log \left(\prod_{b_{i}>0} x_{i}\right)} d x_{2} \cdots d x_{m}
$$

for W some small neighborhood of 0 in \mathbb{R}_{+}^{m-1}.
To take care of that integral, we observe that for $i \geqslant 2$, we have $c_{i}>0$ as a consequence of (1)-(2). This implies that $\lambda_{i}\left(\epsilon^{\prime}\right)>-1$ for any $\epsilon^{\prime}<\epsilon$. The convergence of the integral is now immediate.

Remark 0.4. - The above proof generalizes to the case where D is merely a normal hypersurface of X.

Acknowledgement. The author would like to thank Mario Chan for pointing out the inaccuracy in [Gue12].

References

[Cha21] T. O. M. Chan - "A new definition of analytic adjoint ideal sheaves via the residue functions of log-canonical measures I", Preprint arXiv:2111.05006, 2021.
[Eis10] E. Eisenstein - "Generalizations of the restriction theorem for multiplier ideals", Preprint arXiv:1001:2841, 2010.
[Gue12] H. Guenancia - "Toric plurisubharmonic functions and analytic adjoint ideal sheaves", Math. Z. 271 (2012), no. 3-4, p. 1011-1035.
[Kol97] J. Kollár - "Singularities of pairs", in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 221-287.
[Tak10] S. Takagi - "Adjoint ideals along closed subvarieties of higher codimension", J. Reine Angew. Math. 641 (2010), p. 145-162.

Henri Guenancia, Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France - E-mail:henri.guenancia@math.cnrs.fr

